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ABSTRACT
An attacker can draw attention to items that don’t deserve
that attention by manipulating recommender systems. We
describe an influence-limiting algorithm that can turn exist-
ing recommender systems into manipulation-resistant sys-
tems. Honest reporting is the optimal strategy for raters
who wish to maximize their influence. If an attacker can
create only a bounded number of shills, the attacker can
mislead only a small amount. However, the system even-
tually makes full use of information from honest, informa-
tive raters. We describe both the influence limits and the
information loss incurred due to those limits in terms of
information-theoretic concepts of loss functions and entropies.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, Reliability

Keywords
Recommender systems, manipulation-resistance, shilling

1. INTRODUCTION
Content posted on the Internet is not of uniform qual-

ity, nor is it equally interesting to different audiences. Rec-
ommender systems guide people to items they are likely to
like, based on their own and other people’s subjective re-
actions. We will refer to people’s opinions generically as
ratings, whether users explicitly enter them in the form of
ratings or tags, or whether the system infers them from im-
plicit behavioral indicators such as purchases, read times,
bookmarks, or links.

Authors and other parties often want to direct attention
to particular items. Google, Yahoo!, and others channel this
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into a multi-billion dollar advertising marketplace. But to
the extent that people rely on recommender systems of var-
ious kinds to guide their attention, there are also natural in-
centives for promoters to manipulate the recommendations.
An attacker may rate strategically rather than honestly and
may introduce multiple entities, sometimes called sybils, to
rate on behalf of the attacker.

We offer a manipulation-resistance algorithm, called the
Influence Limiter, that can be overlaid on existing recom-
mender algorithms. Consider the predictions about whether
a particular target person will like various items. Each rater
begins with a very low but non-zero reputation score. The
current reputation limits the influence she1 can have on the
prediction for the next item. Eventually, the target person
indicates whether he likes the item and the raters who con-
tributed to predicting whether the target would like it gain
or lose reputation. The more that a rating implies a change
in the prediction for the target, the greater the potential
change in the rater’s reputation score. A rater who simply
goes along with the previous change will have no impact and
thus get no change in her reputation.

The Influence Limiter has several desirable properties.
First, in order to maximize the expected reputation score
of a single rater endowed with some information about the
target’s likely response to the items, the optimal strategy
is to induce predictions that accurately reveal that rater’s
information about the items. If the underlying recommen-
dation algorithm is making optimal use of ratings, this im-
plies that entering honest ratings is optimal. An important
special case is that a rater who has not interacted with an
item, and therefore has no information about the target’s
likely response to it, can only lose reputation in expectation
by giving a rating.

Second, the actual reputation score of any rater is always
positive and is bounded above by an information-theoretic
measure of the actual improvement that rater has made in
the predictions for the target. It is not possible to prevent
all manipulations of the predictions for particular items– a
rater who provides good information on all other items but
strategically provides bad information on one item is indis-
tinguishable from a rater who simply has an unusual opinion
on the item in question. Our algorithm does, however, en-
sure that no rater can negatively impact the overall set of
recommendations for a target by more than a tiny amount.
Moreover, if the item being manipulated is unlikely to be of
interest to the target, later raters may provide information

1We refer generically to raters as female and the target for
predictions as male.
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that corrects the prediction on that item before the target
is affected by the recommendation.

Finally, our algorithm limits the amount of damage that
can be done with sybils. For example, if one rater provides
bad information about an item in order to increase the repu-
tation of another rater who later corrects that bad informa-
tion, the expected sum of the reputations of the two raters
does not increase. Thus, while it may be possible to trans-
fer reputation among sybils, it is not possible to increase
the total reputation of the raters that a person controls. We
presume that the recommender system imposes some mini-
mal cost (or inconvenience) on the creation of rater entities.
Thus, there is some bound (say, 1,000) on the number of
sybils one person can create without it being too costly and
without being detected. The initial reputation of each rater
is set low enough that the total reputation of this bounded
number of raters is still relatively small.

To further motivate our manipulation-resistance algorithm,
consider some approaches to manipulating conventional rec-
ommender systems. One threat is a cloning attack. For
example, in a recommender system that asks each rater to
report movie ratings on a 1-5 scale, the attacker simply re-
ports the same ratings as some other rater, except for a
single item to be manipulated. Most recommender systems
do not take into account the order of ratings, and thus the
attacker will have just as much effect on predictions for the
last item as the rater who was copied. In a nearest-neighbor
recommender algorithm, the attacker can even just clone
the ratings of the target; the attacker will then be the near-
est neighbor of the target. The cloning attack can be made
more difficult by hiding the actual rating vectors of raters,
but significant information about others’ ratings will leak
out in the content of the recommendations, and sophisti-
cated attackers will be able to create influential rating pro-
files through approximate cloning. Our approach thwarts
the cloning attack by adding reputation only when a rater
improves the prediction made for some target. Unless the
rater moves the recommendation from where it was before
the rater provided its information, the rater can neither gain
nor lose reputation.

A second threat to conventional recommender systems
comes from random profile flooding. An attacker creates a
large number of sybils that provide random reports except
on the item or items to be manipulated. By chance, some
sybils may appear to have provided useful information in
their random reports. These sybils are used to impact the
prediction for an item being manipulated. Our algorithm
thwarts this attack by making the probability of gaining
sufficient credibility through random reports very low, so
low that an attacker gains less influence in expectation from
its sybils making random guesses than from simply transfer-
ring the initial credibility of all its sybils to a main identity.
Moreover, any sybil profile that does happen to gain a high
credibility score has, by chance, moved the predictions for
the target in a useful way, thus compensating for the lost
utility from the subsequent manipulation.

The paper begins with an exploration of related work in
section 1.1. Section 2 presents a model of the recommending
process. Section 3 presents our algorithm. Section 4 pro-
vides formal statements of its manipulation-resistance prop-
erties. Section 5 presents information-theoretic bounds on
the information loss due to influence limits. Section 6 dis-
cusses limitations and possible extensions.

1.1 Related Work
The possibility of sybil attacks on recommendation sys-

tems has been noted by O’Mahony et al. [22] and Lam and
Riedl [15], who use the term “shilling attack”. Through
simulation, Lam and Riedl study versions of the cloning and
random profile attacks on different recommender algorithms,
and note that the effectiveness of the attack varies depend-
ing on the algorithm used. However, they do not address
the development of a provably attack-resistant algorithm.

Several authors have suggested using statistical metrics
on ratings to distinguish “attack” identities from “regular”
identities, and eliminate the former [7, 23, 18]. Mobasher et
al. [20] survey this literature and classify attack strategies.
This approach is likely to lead to an arms-race where shillers
employ increasingly sophisticated patterns of attack. To
avoid this, our approach does not rely on identifying particu-
lar attack identities or specific attack strategies. O’Donovan
and Smyth [21] suggest using accuracy information from
multiple targets to judge credibility; it would be interest-
ing to see if our scheme can be extended in this way.

Dellarocas [8] provides an algorithm that bounds the dam-
age that attackers can do when they collectively provide less
than half the ratings in the system and the honest ratings
are normally distributed. Our approach succeeds much more
generally, even in situations where only a tiny fraction of the
ratings are honest, at the expense of greater information loss
during the startup phase when raters are not yet credible.

Herlocker et al. [13] study a modification of a nearest-
neighbor recommender algorithm that does not count a rater
as a near neighbor until it has rated sufficiently many items
in common with a target rater. This is similar in spirit to
our influence-limiting approach, but we provide a limiting
process that is grounded in information theory and provably
resistant to manipulation.

We use proper scoring rules to elicit honest ratings. These
were pioneered in the context of forecasting objective events
like weather patterns [4]; Miller et al. [19] noted that scor-
ing rules could be adapted to the recommendation setting by
treating the target’s rating as an objective outcome. Han-
son [11] developed the market scoring rule as a mechanism
for information markets. In this mechanism, a trader is re-
warded with the score difference between her prediction and
the previous prediction. This relative scoring rewards the
first provider of information, and forms an essential compo-
nent of our approach. We develop additional machinery to
handle strategies involving sybils and bankruptcy.

Bhattarcharjee and Goel [3] suggest sharing the revenue of
a ranking system with the raters. Using techniques similar
to market scoring rules to determine the revenue shares,
they argue that an attack on the system would be costly.
In contrast, we do not require any real money transactions,
and prove bounds on the damage that sybils can do.

We use the error score change as a natural measure of per-
formance of the system and damage to the system. Rashid
et al. [25] propose several other algorithm-independent mea-
sures of rater influence; unlike error score change, their mea-
sures do not consider the dynamic order of ratings. Sepa-
rately, Rashid et al. [24] use entropy to analyze a different
problem: choosing which items to ask new users to rate.

The literature on bounded-regret online learning deals
with combining predictions from multiple forecasters and
proving worst-case bounds on the error relative to the best
predictor that could be chosen in hindsight (see Cesa-Bianchi
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and Lugosi [5] and references therein). Many online learning
algorithms can also be viewed as schemes for betting on a se-
quence of events [26]. The influence-limiting algorithm can
be interpreted as an online learning algorithm: our damage
bound is a form of relative error bound. The online learning
literature typically does not take the order of forecasts on
a single item into account; our algorithm is tailored to this
critical feature of the recommender setting.

Awerbuch et al. [2] study manipulation in a different model
of the recommendation process: a user samples items and
recommendations until he likes an item, at which point he
recommends that single item to others. They present a sam-
pling algorithm and prove bounds on the number of samples
required, even in the presence of adversaries. Awerbuch and
Kleinberg [1] describe an online learning scheme that is prov-
ably good for a generalization of this problem that incorpo-
rates time-varying preferences and recommendations.

Sybilproofness has been studied in the context of repu-
tation systems by Cheng and Friedman [6]. Their mecha-
nisms begin with a trust graph: expressions of trust by raters
about other raters. Advogato [16] and Eigentrust [14] also
attempt to address manipulation in a trust-graph model.
Massa and Bhattacharjee [17] show how external trust re-
lationships can be used to improve recommender systems.
These techniques are not directly usable in our setting, be-
cause raters may not know anything about the other raters
in the system. In fact, our algorithm can be viewed as a way
to securely derive a trust (or credibility) graph from ratings
on inanimate objects.

2. THE RECOMMENDING PROCESS

Recommender
Algorithm

rating matrix

us
er

s

items

r1 r2 rj

q1 q2 qj

user reports

sequence of
predictions

Figure 1: A recommender system

We now present a formal model of the recommending pro-
cess, illustrated in Figure 1. Let N denote the total number
of identities in the system, and N denote the set of identi-
ties. We use M to denote an upper bound on the number
of items that are available for rating, so that each item can
be assigned an index in {1, · · · , M}.

There is a space L of possible labels, which describes the
classification of items by the target for whom the system
makes predictions. The prediction space X is a set of prob-
ability distributions over the label space; a prediction q ∈ X
is thus a distribution over labels. Prior to the target provid-
ing a label, a sequence of raters provide ratings r1, r2, · · ·
that change the recommender system’s assessment of the
target’s probability distribution over labels.

We describe the process assuming that all raters enter
ratings into the same underlying recommender algorithm,
which combines them with previous ratings to generate pre-
dictions; this matches the standard mode of operation of
current recommender systems. The formal analysis extends

to more general settings: raters could directly report proba-
bilities, incorporating past information in any way they like.
In practice, the recommender algorithm would also use each
incoming rating to update predictions about other items and
for more than just one target person. It is sufficient for our
purposes to describe the predictions for a single target.

Existing recommenders typically predict a single number,
which corresponds to the mean of the distribution over la-
bels on a numeric scale (e.g., 3.8 on a 1-5 scale). To function
in our scheme, such recommenders could be extended to re-
port entire probability distributions (e.g., 30% chance of 5;
20% chance of 4; 50% chance of 3). Alternatively, interme-
diate labels and point predictions can both be interpreted
as a mixture of ratings over the extreme points (e.g., 3.8 is a
70% chance of 5 and 30% chance of 1). However, in the spe-
cial case where there are only two possible labels, the mean
(e.g., .7 on a 0-1 scale) completely determines the entire dis-
tribution. In the rest of this paper, we shall assume that
the label space is simply {HI, LO}, and that a prediction
expresses the mean, the probability of a HI label.

2.1 Measuring Error: Loss Functions
In this section, we describe the error measures we use for

a single prediction. Later, in section 5.1, we will see that
these error measures lead naturally to information-theoretic
measures of a rater’s expected contribution.

We begin by assigning a value to good recommendations.
We do this by postulating that the target has a loss function
L(l, q), where q ∈ [0, 1] is the recommendation (predicted
probability of rating HI) that the target was given, and
l ∈ {HI,LO} is the target’s ultimate label. One common
choice is the log-loss function:

L(HI, q) = − log q; L(LO, q) = − log(1 − q)

Although typically logarithms to base 2 are used, so as to
measure entropy in bits, we use natural logarithms (loga-
rithms to base e) throughout this paper. Note that the loss
is 0 when the prediction is completely accurate (i.e., when
there is no error in the prediction).

One drawback of the log-loss function is that it is un-
bounded as q tends to 0 or 1. We need to avoid the possibil-
ity of infinite (positive or negative) scores. One alternative
is the Quadratic loss function/scoring rule:

L(HI, q) = (1 − q)2; L(LO, q) = q2

This corresponds to using the expected squared error (the
variance) as a measure of uncertainty, which has a long his-
tory in statistics. It also corresponds to the use of mean
squared error as a measure of prediction accuracy in recom-
mender systems that make predictions on a 0-1 scale. The
quadratic loss function is clearly bounded by [0, 1].

3. THE INFLUENCE LIMITER ALGORITHM
Figure 2 depicts an influence-limited recommender sys-

tem. There are two key additional features. First, the
prediction qj output by the recommender algorithm passes
through an influence-limiting process to produce a modified
prediction q̃j . The influence-limiting process generates q̃j as
a weighted average of the prediction q̃j−1 prior to incorpo-
rating j’s rating and the prediction qj using j’s rating. The
weighting of the two terms depends on the reputation Rj

that j has accumulated with respect to the target. When
Rj ≥ 1, all weight is on qj , i.e., j has full credibility.
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The second feature is a scoring function that assigns repu-
tation to j based on whether or not the target actually likes
the item. The amount of reputation that can be gained is
again limited by the current reputation, and is selected so
that the reputation will always be positive. It is also tuned
so that honest raters reach full credibility after O(log n) rat-
ings, to limit the amount information that is discarded in the
influence-limiting step before a rater reaches full credibility.
If a rater’s entire reputation was risked on each rating, the
probability of getting to full credibility from a sequence of
ratings the target agrees with would be too small and the
expected time to full credibility would be too high. The rate
limiter βj threads the needle, allowing the rater to risk more
as her reputation rises, but not risk too much, as we prove
in section 5. 2

Figure 3 presents the algorithm more formally. Each rater
begins with a tiny reputation e−λ, small enough so that even
a large number of raters would have total reputation much
less than 1. βj = min(1, Rj) determines j’s influence limit;
if Rj is above 1, j can move the prediction q̃j−1 to qj , but if
Rj is below 1 she can only move it partway there. The score
for rater j on the current item is a fraction βj times the
market scoring rule, the difference between the loss function
for the prediction q̃j−1 and the loss function for qj . Note
that she is scored on the prediction she would have liked to
make, qj , even if the rate limiter only permitted her to move
the prediction to q̃j .

The log loss and quadratic loss functions are proper scor-
ing rules [4, 9]. That means that its expected value is maxi-
mized when qj matches the true probability that the target
likes the item. This eliminates any incentive for rater j to
lie about her rating, if she wants to maximize her expected
reputation score, a property that we prove more formally in
section 4. Note that honest reporting only maximizes the
score in expectation; given the target’s true opinion of the
item, the actual loss is minimized with a prediction of that
outcome with certainty.

4. STRATEGIC PROPERTIES
Our main non-manipulation result shows that, for any

attack strategy involving up to n sybils, the net negative
impact (damage) due to the attacker is bounded by a small
amount. We first state two important assumptions we make
about the attack strategy, and then prove the results on
damage limits. We also show that a user seeking to maxi-
mize her influence has a strict incentive to rate honestly.
Assumptions: One important assumption we make is that
there is a number n that bounds the maximum number of
fake identities a single attacker can create. As stated in sec-
tion 1, we intend n to be a fairly large number, perhaps in
the thousands or even millions. It might appear that limit-
ing a user to a million identities is qualitatively as difficult
as limiting her to one, but there is an important difference
in practice. For example, many sites require new users to
solve CAPTCHAs [27], which are puzzles that require a few
seconds of human attention. While this is a mild incon-
venience for most users who create only one account (or

2By analogy, consider a sequence of coin flips where you
double your money on heads and give back all but $1 on
tails. The expected time to reach a bankroll of $x would be
quite long, even if heads occurred with probability 0.75. By
contrast, if tails only required giving back half your money,
the expected time would be 2 log x.
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Figure 2: An influence-limited recommender system

ComputeReputations(λ)

1. Initialize Rj = e−λ for all j.

2. For an item the target will eventually label do:

a. q̃0 = p0

b. Consider the ratings on the item in temporal
order

c. For each rater j:

d. βj = min(1, Rj)

e. q̃j = (1 − βj)q̃j−1 + βjqj

f. After the target provides label l, Rj = Rj +
βj [L(l, q̃j−1) − L(l, qj)]

Figure 3: Algorithm to compute reputations and

limited predictions. Loss function L can be any

proper scoring rule bounded by [0, 1].

a few accounts), it can make creating millions of accounts
prohibitively expensive. On the other hand, the only real-
istic way to limit a user to only one account is to use and
verify personally identifying information for each account,
which is a major privacy threat, and can be costly and time-
consuming. Note that we do not assume that a constant
fraction of the identities in the system are real users; the set
of identities can be dominated by an attacker’s sybils.

Secondly, we restrict our attention throughout this paper
to myopic attack strategies. In particular, we do not con-
sider reputation-building strategies in which the attacker
enters poor ratings that mislead later raters into amplify-
ing her misinformation, and then later corrects it with an
additional rating from another sybil. This is a nontrivial
assumption: In many cases, the optimal prediction after
honest ratings from agents 1, 2, .., j will be sensitive to each
of their inputs and might amplify the change in predictions
by earlier raters.
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These non-myopic strategies, if they exist, would be equiv-
alent to manipulative strategies in information markets, anal-
ogous to initiating a buying frenzy for a particular stock and
then selling to the very buyers who entered the market be-
cause of your actions. While there are market settings in
which non-myopic strategies are theoretically possible, sev-
eral studies have shown that such manipulation attempts are
not very successful in practice (see, e.g. [12]). Non-myopic
manipulative strategies, if they exist, are also likely to be
quite complex for an attacker to carry out, as they would
require delicate calculations about other agents’ inference
and learning methods. In this paper, we restrict our at-
tention to preventing the simpler (but still very powerful)
myopic attacks. Research on non-myopic manipulation in
information markets, and methods to guard against them,
will have direct relevance to our mechanism.
Impact of rater j: We now introduce a measure of rater
j’s impact on the recommendation quality. j’s rating qj on
an item i has an immediate impact on the recommendations:
The recommendation q̃j−1 is changed to the recommenda-
tion q̃j . We define the myopic impact attributed to j for item
i, ∆i

j , by:

∆i
j

def
= L(li, q̃j−1) − L(li, q̃j)

(Here, li is the target’s rating on item i.) In other words,
∆i

j measures the reduction in prediction loss that resulted
from the immediate changes in recommendation following
j’s rating.

Note that myopic impacts are additive. The total impact
of a sequence of raters is the reduction in error from the
initial default prediction to the final prediction q̃J . This can
be expressed as the sum of the impacts attributed to the
individual raters because the terms telescope:

X

j

∆i
j =

X

j

[L(li, q̃j−1) − L(li, q̃j)] = L(li, p0) − L(li, q̃J )

Finally, we define the net impact of rater j by the sum of
her myopic impacts on all items i: ∆j =

P

i
∆i

j .
We now prove our non-manipulation results in this con-

text. First, we make a straightforward but important obser-
vation about the reputations calculated by the algorithm:
Observation: Rj ≥ 0
This is true initially, and it is clearly maintained in step 2.f
of the algorithm because L() is bounded between 0 and 1.

Lemma 1. (Honest Reporting) For any entity j, if j be-
lieves (at the time of rating) that the probability of the item
being labelled HI is q, j optimizes her expected reputation
gain on this item by putting in a rating such that qj = q.

Proof. From line 2.d, it can be seen that the change ∆Rj

in j’s reputation is proportional to L(li, q̃j−1) − L(li, qj).
Agent j cannot control the first term. As the scoring rule
is proper, the second term is minimized in expectation by
reporting qj = q.
Remark: In itself, this is an incentive for honest rating only
if users care about their reputations or influence. Inducing
users to care about reputations is an orthogonal issue; this
might be done through status rewards for raters with high
reputation, or by adding a little noise to the recommenda-
tions for users with low reputation.
Remark: If the recommender algorithm that generates the
predictions qj from the ratings r1, · · · , rj is imperfect, rater

j may benefit by compensating for the algorithm: reporting
a value rj different from what she truly perceived in order
to improve the prediction.

The following critical lemma relates the influence an agent
garners to her measured impact on prediction error.

Lemma 2. (Reward-performance inequality) The reputa-
tion increase ∆Rj of player j on an item i is no more than
the impact ∆i

j of entity j on this item’s recommendation.

Proof. Let βj denote the influence limit calculated in
step 2.d of the algorithm and l denote the eventual label on
this item. Then, the reputation earned by player j for this
item is

∆Rj = βj [L(l, q̃j−1) − L(l, qj)]

The reduction in prediction error, on the other hand, is given
by

∆i
j = L(l, q̃j−1) − L(l, q̃j)

= L(l, q̃j−1) − L(l, (1 − βj)q̃j−1 + βjqj)

(Note that ∆Rj and ∆i
j may be negative.) For both scoring

rules we consider, log and quadratic, the loss functions are
convex, and so we have:

L(l, (1 − βj)q̃j−1 + βjqj) ≤ (1 − βj)L(l, q̃j−1) + βjL(l, qj)

Thus, substituting in the expression for ∆i
j , we get

∆i
j ≥ βj [L(l, q̃j−1) − L(l, qj)] = ∆Rj

Corollary 3. At any point of time, the total myopic im-
pact ∆j of all ratings by entity j satisfies ∆j ≥ −e−λ.

Proof. From the algorithm, it is clear that βj and Rj

are never negative. Thus, the net decrease in reputation of
entity j is at most e−λ. By lemma 2, the net increase in
prediction error ∆j =

P

∆i
j due to j’s ratings is no more

than this.
We can now state our main manipulation resistance prop-

erty:

Theorem 4. (Limited Damage) Consider any strategy for
the attacker k; the strategy involves the creation of up to n
sybils K = {k1, k2, . . . , kn}. Then, the total myopic impact
of all of k’s sybils is bounded by

X

kt

∆kt ≥
X

kt

Rkt − ne−λ ≥ −ne−λ

Proof. It follows from Corollary 3 by simply summing
over all sybil identities.
Remark: Setting λ = log(cn) for some parameter c, Theo-
rem 4 shows that an attacker cannot cause a total reduction
in the system performance of more than 1/c. This damage
bound does not require any assumptions about rationality,
prior probabilities, or honest ratings.

Note, however, that we are relying on the assumption that
strategies that involve misleading other raters are impossible
to carry out: otherwise, ∆j would not completely capture
the effect j has had on the recommendations. If one sybil
can induce subsequent raters to amplify its effect on the pre-
dicted probability, then a later sybil may be able to secure
an inflated ∆ score, by correcting the amplified misinforma-
tion. The sum of all impacts still correctly measure the total
reduction in prediction but the attacker would be stealing
some impact score from the other raters who were misled by
the initial sybil.
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5. BOUNDING THE INFORMATION LOSS
Manipulation-resistance in itself is not very hard to achieve:

simply ignoring all user ratings would result in nonmanip-
ulable recommendations. It is therefore necessary to show
that the recommendation scheme is still informative. In par-
ticular, the influence-limited operation does not make full
use of the information from a user with low reputation. In
this section, we show that users will in expectation require
O(λ) = O(log n) ratings to build up their influence to an
adequate level. We use this to bound the total information
loss. We work primarily with the quadratic loss function,
but the results should generalize to other loss functions with
different constants.

5.1 Partial Information Model
In order to analyze the performance of the system in terms

of reducing uncertainty, we need a formal model that cap-
tures the uncertainty of rating, raters’ partial information
signals, and raters’ ability to learn from (and copy) previous
ratings. We use a standard model of information partitions,
which is described below. This model is used purely to ana-
lyze information loss; the operation of the Influence Limiter
algorithm does not depend on it.

There is a space Ω of possible states (item types). For
example, each state in Ω might correspond to a particu-
lar combination of a large number of movie attributes. For
each ω ∈ Ω, there is a corresponding value l(ω) ∈ {HI, LO}
that describes whether the target will like items in that
state (i.e., with that combination of attributes). Further,
we assume there is a common prior probability distribution
p : Ω → [0, 1] that defines the relative likelihood of different
states in the absence of additional information. We use p0

to denote Pp(l(ω) = HI), the prior probability, before tak-
ing into account any ratings, that a randomly chosen item
will be labelled HI by the target. We assume that the state
space is finite.

When a rater acquires a signal about an item, we model
her as eliminating some of the possible states, but not chang-
ing the relative likelihood of the remaining states. For ex-
ample, she might be able to tell if the movie is violent or not,
but not be able to discern some other characteristic, such as
humor, that would distinguish among violent movies. More
formally, all information acquisition is modelled in terms of
identifying a component of a partition π of the state space
Ω. A rater j has a partition πj = {π1

j , · · · , πt
j}. This is a

partition, so πs
j ∩ πk

j = ∅ for s 6= k, and ∪sπ
s
j = Ω. The in-

terpretation is that after acquiring a signal about the item,
e.g., by watching the movie, j will know which component
πs

j of her partition the true state belongs in, but will not be
able to distinguish two states in the same partition.

Given the loss function L, a natural way to frame the
objective of the recommender system is to attempt to min-
imize the total error in the predictions, as measured by the
sum of the losses. If no partial information from raters was
available, the best prediction the system (or the target her-
self) could make would be to say q = p0 = Pp(l(ω) = HI).
This value of q can be shown to minimize the expected loss
in the absence of any other information; the expected loss
on each item is then given by the entropy H(l): H(l) =
−p0L(HI, p0) + (1 − p0)L(LO, (1 − p0)).

The log-loss function (or logarithmic scoring rule) allows
us to frame our results in terms of standard information-
theoretic entropy. Other loss functions can be used as scor-

ing rules in our algorithm, and would correspond to other
measures of entropy, relative entropy, etc. (see the article
by Grunwald and Dawid [10] for more information). The
entropy measures thus derived are conceptually similar to
the standard entropy.

Now, consider a sequence of raters 1, 2, · · · , j; each rating
identifies a component of that rater’s partition. Then, the
prediction made after j’s rating will depend on j’s rating as
well as all previous ratings. The information available to the
recommender algorithm can be represented by a partition
π̂j that is a refinement of πj , reflecting the fact that it can
distinguish between items which j rated differently as well
as possibly some items which were in the same component
of πj , but different components of the partition of some πk

for k < j. An ideal recommender algorithm then makes the
best possible prediction qj given this information.

A sequence of ratings by raters 1, 2, . . . , j thus defines a
sequence of partitions π̂1, · · · , π̂j−1, π̂j . Generally, π̂j is a
refinement of π̂j−1: no component of π̂j overlaps multiple
components of π̂j−1.

3

We can now define the innate informativeness of player
j as the expected reduction in loss due to player j’s par-
ticipation as the jth rater in the sequence, before we learn
what any of the realized ratings are. For any component
s ∈ π̂j , define sj−1 ∈ π̂j−1 as the component of π̂j−1 con-
taining s. We can then define qj(s) = P (l(ω) = HI |ω ∈ s)
and qj−1(s) = P (l(ω) = HI |ω ∈ sj−1). That is, qj(s) is the
posterior probability the target will like the item if the state
is in the partition s, and qj−1(s) is the predicted probability
after the rating sequence that would occur when the state
is in s, but before taking into account j’s rating.

The informativeness (i.e., expected error reduction)
I(π̂j ||π̂j−1) due to the addition of user j’s private informa-
tion is calculated as:

I(π̂j|π̂j−1)
def
=

X

ω∈Ω

pω[L(l(ω), qj−1(ω)) − L(l(ω), qj(ω))]

=
X

s∈π̂j

psD(qj(s)||qj−1(s))

where D(q||r) = q[L(HI, r)−L(HI, q)]+ (1− q)[L(LO, r)−
L(LO, q)] is the relative entropy, a central construct in in-
formation theory. We can formally extend this definition
to define I(q||u) for any functions q(ω) and u(ω) that are
constant on components s, such as the influence-limited pre-
dictions q̃j .

This I(π̂j|π̂j−1) is our measure of the incremental value
of j’s information given the ordering 1, 2, · · · , j. If j rated
earlier in the sequence, she might look more informative, as
her ratings might be less redundant with the information
provided by previous raters.

5.2 Analyzing the information loss
In order to simplify the analysis, we assume a fixed rating

order 1, 2, . . . , j, . . . on all items. We also assume that the
ratings are reported without error and the underlying rec-
ommender algorithm correctly processes them to determine
q values. These assumptions allow us to present a concise

3It is possible that π̂j−1 has two or more components in
which the expected value of l is exactly the same, and hence,
j − 1 rates in exactly the same way. However, as qj−1 takes
the same value on all these components of π̂j−1, we can think
of them as one component without altering the analysis.
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information-theoretic bound on the information loss due to
influence limiting. Note that there may be other sources
of information loss in practice (e.g., rating errors or rec-
ommender imperfections). As before, we assume that the
ratings on different items are independent.

Given the order in which users rate, we want to relate
the influence j earns to the informativeness I(π̂j ||π̂j−1) of
j’s private information. From step 2.f of the algorithm, the
expected growth in reputation of a rater j with reputation
Rj ≥ 1, whose rating identifies a component of π̂j on which
the prediction changes from u to q, is:

q[L(HI,u) − L(HI, q)] + (1 − q)[L(LO, u) − L(LO, q)]

This is just the relative entropy, D(q||u).
The players’ reputations are initially very small. Initially,

then, the amount that a reputation grows is scaled by Rj .
We now show that a reputation builds exponentially in the
number of ratings: The expected logarithm of the rater’s
reputation grows at a rate that depends on the rater’s in-
formativeness but not on the reputation.

Suppose a player with reputation Rj < 1 moves a predic-
tion (on some item i) from u to q. With probability q, this
item will eventually be labelled HI , and her reputation will
be adjusted to R′

j = Rj + Rj(L(HI,u) − L(HI, q)). Simi-
larly, with probability 1− q, her reputation will be changed
to R′

j = Rj +Rj(L(LO, u)−L(LO, q)). Then, the expected
value of log R′

j is given by:

E(log R′
j) = q log[Rj(1 + L(HI,u) − L(HI, q))]

+ (1 − q) log[Rj(1 + L(LO, u) − L(LO, q))]

= log Rj + GF (q||u),

where the growth factor GF (q||u) is defined as

GF (q||u)
def
= q log(1 + L(HI,u) − L(HI, q))

+(1 − q) log(1 + L(LO, u) − L(LO, q))

The growth factor determines the expected rate of growth
of j’s reputation a single component of π̂j that j′ rating
identifies. We define an expected growth factor measure
EGF (π̂j ||π̂j−1) by averaging over all possible components
that j’s rating could identify:

EGF (π̂j ||π̂j−1)
def
=

X

s∈π̂j

psGF (qj(s)||qj−1(s))

As in the case of the informativeness measure, we can ex-
tend this definition naturally to define EGF (q||u) for any
functions q(ω) and u(ω) that are constant on components
of π̂j and π̂j−1 respectively.

Lemma 5 shows that the growth factor on any single
component of π̂j is close to the relative entropy on that
component. Lemma 6 extends this to show that the ex-
pected growth factor is close to rater j’s informativeness
I(π̂j ||π̂j−1), even if j is scored relative to the previous influence-
limited prediction q̃j−1 instead of the previous accurate pre-
diction qj−1. Proofs of these results and theorem 7 are omit-
ted from the paper due to space restrictions; they can be
found in an Appendix which has been archived online at
http://hdl.handle.net/2027.42/55415.

Lemma 5. For the quadratic scoring rule (MSE) loss, for

all q, u ∈ [0, 1], GF (q||u) ≥ D(q||u)
2

.

Lemma 6. Suppose π̂j and π̂j−1 are two partitions such
that π̂j is a refinement of π̂j−1. For each state ω, let qj(ω) =
E(l(ω)|π̂j) be the optimal prediction function given partition
π̂j . Let u(ω) be any function that is constant on each com-
ponent of π̂j−1. Then, EGF (qj||u) ≥ I(π̂j ||π̂j−1)/2 in the
quadratic loss model.

Theorem 7. Suppose rater j has rated m items, and sup-
pose the informativeness of rater j is I(qj ||qj−1) = h. Then,
for all m ≥ (2λ + 1)/h, rater i’s expected reputation (with
the quadratic scoring rule) is bounded below by

E(Rj) ≥ mh − 2λ − 2 log(mh − 2λ)

The intuition behind this bound is simple: While j’s rep-
utation is below 1, log Rj increases by at least h/2 in ex-
pectation; thus, after 2λ/h ratings, log Rj will be at least 0
(i.e., Rj will be at least 1) in expectation. After this, j is
not influence limited, and she will earn (an expected amount
of) h in reputation in each subsequent round. Thus, in each
of the last (m − 2λ/h) rounds, she gains reputation h in
expectation, for a total of about (mh − 2λ).

An important consequence of Theorem 7 is that, by the
Reward-Performance inequality (Lemma 2), the expected
impact of player j will be greater than her reputation. In
other words, we can expect to discard at most about 2λ units
of information from each rater in total.

Note that this information loss bound employs a very con-
servative accounting scheme. Without the Influence Limiter,
rater j would have contributed h bits on item i, but the in-
fluence limits reduces the effect of j’s rating, we account
for this as lost bits. However, if there is a subsequent rater
j +1 with sufficient reputation, the eventual prediction may
be the same as without influence limits. Rater j + 1 might
have been redundant in the absence of influence limits, but
contributes valuable information to compensate for the loss
of j’s information when influence limits are present. Thus,
the information loss bounds are based on a worst-case sce-
nario.

6. CONCLUSION AND FUTURE WORK
We have presented an architecture and algorithm to limit

the influence of individual raters that is provably manipu-
lation-resistant (even when an attacker can create a large
but bounded number of sybils), yet discards only a bounded
amount of information from each rater. The smaller the
size of the sybil attack that must be prevented, the less in-
formation that will be discarded from honest raters as they
build up their credibility. There are two key ingredients to
our system. First, we use the same metric L to measure
the prediction performance of the system and to calculate
raters’ contributions (reputations). Second, the bootstrap-
ping scheme is carefully balanced: we tie the influence a
rater can have to her accumulated reputation in a way that
enables informative raters to ramp up exponentially fast,
while limiting the total damage at any point to the amount
of positive impact already created by each rater.

Our results suggest several questions for future work. We
have presented the algorithm as if one item is under con-
sideration at any point of time, or equivalently, as if we get
feedback about the true label as soon as the recommenda-
tion is used. In practice, several recommendations may be
used before we get feedback about any of them; our algo-
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rithm will need to be modified slightly to manage “credit”
in this scenario.

Another complication that we have not yet addressed is
the target’s selection bias in labeling items. The target is
more likely to view items with high recommendations, and
as a result, items with low recommendation values might
be less likely to be labelled; this could influence the raters’
incentives to provide effort. Modified scoring schemes that
correct for this bias would be very interesting.

Our manipulation resistance result assumes that an at-
tacker cannot mislead future raters into amplifying the ef-
fects of their ratings in a way that boosts the attackers’ own
credibility. Another area of interest for future work is to
analyze and prevent such non-myopic strategies.

Although we have proven theoretical bounds on informa-
tion loss, any amount of discarded information during the
initiation period is still of concern, particularly in settings
in which each individual rater has low incremental informa-
tiveness h or will rate only a few items. The algorithm will
need to be carefully tuned to work well in such settings.
A lower bound on the minimum information loss that any
manipulation-resistant algorithm must incur would also be
useful for comparison.
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